
Scripting the Lighthouse (scripting light, compund objects and simple animation)

Hi !

For my new map I needed a lighthouse. It is a nightmap, and I thought it important that the light-
beacon really enlights the scene, throws a flare and rotates. So here some basics of my model first.

Please understand that I do not upload my models yet, this tutorial shall only cover some general
scripting topics. Just make models yourself...

The model "lighthouse.cgf" is the building itself. The model has two helpers (3dsmax dummy
objects) named "helper_light" and "helper_lamp". It is important to place them correctly and to
export them into the cgf.

The model "lamp.cgf" is a lamp cone (attached to a cylinder). This lamp will turn.

helper_lamp is placed at the position of the lamp (the pivot of the lamp shall be placed here later
on)
helper_light is the initial position of the light source.

Here some pics to show what I mean. In the first you see the lighthouse-top with the lamp inside (it
is inside a glass cylinder). The box on the bottom of the lamp is "helper_lamp", the box to the right
is "helper_light". The house and helpers get exported to "lighthouse.cgf", the lamp to "lamp.cgf".

http://www.no-iq.de/download/lighthouse/scn1.jpg
http://www.no-iq.de/download/lighthouse/scn2.jpg

http://www.no-iq.de/download/lighthouse/scn3.jpg
http://www.no-iq.de/download/lighthouse/scn4.jpg

The Scripting.

First of all add a "lighthouse" entity to classreg.lua. I won't go into the details of this, because others
have done tutorials about editing classreg.

code:

1: {"", "Lighthouse", 254, "Lighthouse.lua"},

Now let's create farcry/scripts/default/entities/lighthouse.lua. At first the Properties (not all are in
use yet, and many of them are copy&paste of dynamiclight.lua and automaticelevator.lua).

ATTENTION: Please take a look at the light shader property. It is "LightBeamTower". This is our
own light shader, which we have to configure later on.

code:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:

Lighthouse = {
 Properties = {
 fileModel = "Objects/lighthouse.cgf",
 fileLamp = "Objects/lamp.cgf",
 bRotate = 1,

 WarnLight=
 {
 bHasWarnLight = 1,
 fLightRadius=10000,
 clrLightDiffuse={254, 255, 255},
 clrLightSpecular={255, 255, 255},
 LightAngles = {
 x=0,
 y=0,
 z=0,
 },
 fLightRotSpeed = 50,

 bProjectInAllDirs=0,
 ProjectorFov=90,
 texture_ProjectorTexture="Textures/projector.jpg",
 shader_lightShader="LightBeamTower",
 bAffectsThisAreaOnly=0,
 bUsedInRealTime=1,
 bFakeLight=0,
 bHeatSource=0,
 bIgnoreTerrain=0,
 Optimization=0,
 bDot3Type=1,
 bFakeRadiosity=0,
 vector_LightDir={x=0,y=90,z=0},
 bFixedLightDir={x=0,y=90,z=0},
 bOcclusion=1.0

 },
 },
}

Now the functions: OnInit is the constructor. We call the init-Fn OnReset and then set
EnableUpdate(1), for our rotating lamp has to be updated regularly.

code:
1:
2:
3:
4:
5:
6:

function Lighthouse:OnInit()
 self:OnReset();
 self:EnableUpdate(1);
end

OnReset is very interesting: Here we put parts together. We use "LoadObject" to load a cgf,
DrawObject to display it. SetPos will position the cgf. To get the correct position, we use our
helpers: GetHelperPos returns the helper position. Attention on Parameter 2. This is a boolean.
GetHelperPos("helper", 0) gives world-Coordinate, GetHelperPos("helper", 1) gives reltive
coordinates within the CGF (what we need). Then we load a Projector-Texture (the one from the
elevator) and init the light (this will not show it, just initialize!)

Please note that you give your CGFs an integer object-ID when using LoadObject. This ID will be
used as a reference in later calls.

code:

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

function Lighthouse:OnReset()
 self:LoadObject(self.Properties.fileModel, 0, 0);
 self:CreateStaticEntity(10,-2);
 self:DrawObject(0, 1);

 local helperPos=self:GetHelperPos("helper_lamp", 1);
 self:LoadObject(self.Properties.fileLamp, 1, 0);
 self:SetObjectPos(1 , helperPos);
 self:DrawObject(1, 1);

 self.proj_tex_id =
System:LoadTexture(self.Properties.WarnLight.texture_ProjectorTexture,1);

 self:InitDynamicLight(self.Properties.WarnLight.texture_ProjectorT
exture,
 self.Properties.WarnLight.shader_lightShader,
 self.Properties.WarnLight.bProjectInAllDirs,0);

end

Finally we have to make parts rotate. We use some simple trigonometry to position the light.
OnUpdate gets a time-Value as parameter (time since last update). From that we calculate a rotation
angle. We can directly rotate the lamp. The light has to be positioned: At first getting th radius
(planar distance from helper_light to helper_land). We ask Pythagoras for that.

Then we rotate the light around the LAMP Helper (the center of the tower), shift the calculated
radius, but use the height of the light-helper. We use cos() and sin() to move the light accordingly:

code:

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:

function Lighthouse:OnUpdate(dt)
 Pos={x=0, y=0, z=0};
 local lampPos=new(self:GetHelperPos("helper_lamp", 0));
-- new is necessary !!
 local lightPos = new(self:GetHelperPos("helper_light", 0));
-- new is necessary !!
 local rx = lightPos.x - lampPos.x; -- x-distance
 local ry = lightPos.y - lampPos.y; -- y-distance
 local radius = sqrt(rx*rx + ry*ry); -- Pythagoras
 Pos.x = lampPos.x; -- Lamp turns around lamp x,y, but light z
 Pos.y = lampPos.y;
 Pos.z = lightPos.z;

 -- calculate turn angle from dt (see fan.lua)
 self.Properties.WarnLight.LightAngles.z =
self.Properties.WarnLight.LightAngles.z +
self.Properties.WarnLight.fLightRotSpeed * dt;

 if (self.Properties.WarnLight.LightAngles.z>=360) then
 self.Properties.WarnLight.LightAngles.z =
self.Properties.WarnLight.LightAngles.z-360;
 end
 if (self.Properties.WarnLight.LightAngles.z<0) then
 self.Properties.WarnLight.LightAngles.z =
self.Properties.WarnLight.LightAngles.z+360;
 end

 -- now shift the position of the light source.
 Pos.x = Pos.x +
radius*cos(rad(self.Properties.WarnLight.LightAngles.z));
 Pos.y = Pos.y +
radius*sin(rad(self.Properties.WarnLight.LightAngles.z));

 -- now render the light ! This is one huge function call.

 self:AddDynamicLight(Pos,
 self.Properties.WarnLight.fLightRadius,
 self.Properties.WarnLight.clrLightDiffuse[1]*100,
 self.Properties.WarnLight.clrLightDiffuse[2]*100,
 self.Properties.WarnLight.clrLightDiffuse[3]*100,
 1,
 self.Properties.WarnLight.clrLightSpecular[1]*100,
 self.Properties.WarnLight.clrLightSpecular[2]*100,
 self.Properties.WarnLight.clrLightSpecular[3]*100,
 0,
 0,
 0, -- not used
 self.Properties.WarnLight.LightAngles,
 self.Properties.WarnLight.ProjectorFov,
 self.proj_tex_id,
 self.Properties.WarnLight.bAffectsThisAreaOnly,
 self.Properties.WarnLight.bUsedInRealTime,
 self.Properties.WarnLight.bHeatSource,
 self.Properties.WarnLight.bFakeLight,
 self.Properties.bIgnoreTerrain,
 self.Properties.Optimization,
 self.Properties.bDot3Type,
 self.Properties.bFakeRadiosity,
 self.Properties.vector_LightDir,
 self.Properties.bFixedLightDir,
 self.Properties.bOcclusion

61:

);

-- And now turn the lamp. This is simple !! 1 is the Object-ID for our
lamp.cgf
 self:SetObjectAngles(1, self.Properties.WarnLight.LightAngles);
end

Now we need an own light-shader for really decent looking light. Go to FCDATA\shaders.pak and
take a close look on "lights.csl" (a text file).

Add our shader "LighBeamTower". It will have two effects: One really big, transparent light beam
and a bright lens glow. Tweak parameters as liked.

code:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

Shader 'LightBeamTower'
(
 Params
 {
 Sort = SeeThrough
 }
 ClientEffect 'Corona'
 {
 RGBStyle = FromLight
 Scale = 0.9
 DistFactor=0.5
 Map =lens/lens2
 }
 ClientEffect 'Beam'
 {
 Model = objects/indoor/lights/beam.cgf
 LightStyle = 0
 StartRadius = 5
 EndRadius = 60
 Length = 500
 StartColor (1 1 1 0.2f)
 EndColor (1 1 1 -0.1)
 }
 Layer '0'
 (
 Map = $None
)
)

Done. This thing is neat (I really love it). It dynamically enlights the scene (and the light-cone
reflects in the water). If you have any questions or suggestions, please ask.

Regards.

